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Abstract -  One of the problems in biochemistry is how to 

estimate the biological system's behaviour changes over 

time. The types of recursive identification methods like 

recursive least square error (RLSE) estimation and 

Kalman filter is used in previous, the speed of estimation is 

still a limiting factor in biological systems. It is especially 

noticeable when the identifier has to estimate the 

parameters in the situation that it had estimated before but 

has later lost the estimated values because of the changes 

in the behaviour of the biological system. To overcome this 

problem and speed up the identification process, the 

multiple model identification using the self-organizing map 

neural network (MMSOM) has been introduced. In 

multiple modelling, there is more than one estimated 

model for biological systems. In each step of time, the best 

model is selected for the biological systems according to 

previously defined criteria of identifications which is 

adaptive during different times. 
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I. INTRODUCTION 

      The modern approaches of complexity and self-

organization to understanding dynamical biological 

systems concepts can inform current interest in systems 

biology [1], [2]. In the field of identification theory, plenty 

of methods have been developed to estimate model 

parameters of biological systems, such as least square error 

estimation, predictive error estimation and so on [3]. Many 

of the works in this field are for the case that the desired 

model is nonlinear biological modelling. Though the 

theory of linear modelling has significantly been studied, 

there are still a lot of related problems regarding it. The 

recent advances in machine learning algorithms have made 

data-driven approaches more competitive and powerful 

than ever [4]. Arguably, machine learning is one of the 

most important developments in biological data analysis. 

Machine learning has become an indispensable tool in 

bimolecular data analysis and prediction. Virtually every 

computational problem in computational biology and 

biophysics, such as the predictions of solvation free 

energies, protein-ligand binding affinities, mutation 

impacts, has a class of knowledge-based approaches that 

are either parallel or complementary to physics-based 

approaches [5], [6].    

With its ability to recognize nonlinear and high-

order interactions among features as well as the capability 

of handling data with underlying spatial dimensions, deep 

convolutional neural networks have led to breakthroughs 

in image processing, video, audio, and computer vision, 

whereas recurrent nets shed light on sequential data such 

as text and speech. Deep learning has fueled rapid growth 

in several areas of data science [7], [8], [9], [10], [11]. 

Machine learning-based approaches are advantageous 

because of their ability to handle very large data sets and 

nonlinear relationships in physically derived descriptors 

[12]. In particular, deep learning can automatically extract 

optimal features and discover intricate structures in large 

data sets. Multiple modelling and multiple control found 

their ways in industrial applications [13]. Target tracking, 

Aircraft control, and Failure detection and compensation 

are among the interesting topics in the aircraft-related 

fields. A wide variety of applications in bioengineering are 

also found for this method, like blood pressure control, 

arterial oxygen control and electrically stimulated muscle. 

When there are multiple learning tasks, multi-task 

learning (MTL) provides a powerful tool to exploit the 

intrinsic relatedness among learning tasks, transfer 

predictive information among tasks, and achieve better-

generalized performance. During the learning stage, MTL 

algorithms seek to learn a shared representation (e.g. 

Shared distribution of a given hyper-parameter, shared 

low-rank subspace, shared feature subset and clustered 

task structure) and use the shared representation to bridge 

between tasks and transfer knowledge.  MTL has 

found applications to the bioactivity of small molecular 

drugs and genomics [14]. Linear regression-based MTL 

heavily depends on the well-crafted features, while neural 

network-based MTL allows more flexible task coupling 

and can deliver decent results with a large number of low-

level features as long as such features have the 

representation power of the problem. 
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A self-organizing map (SOM) neural network is a 

kind of unsupervised learning neural network, which maps 

and classifies the characteristics of a collection of objects 

to several classes [15]. Most of the applications of this 

network are in signal processing or related topics [16]. 

There are few works related to the application of SOM in 

the identification of process systems. In this paper, an 

algorithm is introduced to use the multiple modelling by 

self-organizing map (MMSOM) neural network for 

computing and adapting the set of multiple models. It is 

applied to linear time-varying systems, and some of its 

mathematical properties have been investigated. One of the 

most striking characteristics of cells is the sheer 

complexity of metabolism. 

II. METHODOLOGY 

In this research, as shown in fig 1, a method for 

model identification of biological complexity as a method 

of stimulating new chemistry using the self-organizing 

map neural network (SOM) is presented. Different 

variations of that are introduced, and some of its properties 

are investigated. Inputs to the neural network are 

parameters of the instantaneous model evaluated 

adaptively in each instant of time. The neural network 

learns these models. Artificial Neural Networks (ANNs) 

are one example of a successful transfer of information 

about a complex biological system on biological 

applications. ANNs were developed, in part, as a tool with 

which to model the brain. To what extent current ANNs do 

so is a continuing subject of discussion, but the effort to 

make the connection between ANNs and brains (and to 

learn from the brain) has unquestionably expanded the 

capabilities of computation. The model with the closest 

output to the biological systems, the output is chosen as the 

model of ANNs systems. 

 

Fig. 1 Structure of the MMSOM identification algorithm 

  After that, the identification method of multiple 

modelling by the irregular self-organizing map 

(MMISOM) neural network is presented, which improves 

the original method of MMSOM that uses the rectangular 

SOM. The irregular SOM used in MMISOM is a graph of 

all the nodes and some of the links that make a minimum 

spanning tree (MST) graph. Using ISOM, the 

neighbourhood between the nodes may change to keep it 

MST. Therefore, ISOM has more flexibility to cover 

concave space while SOM is more suitable for convex 

spaces. Also, using a method introduced in this research, it 

is possible to add new models if the number of models is 

initially less than the suitable one. One of the opportunities 

in fundamental chemical research is to learn from biology 

and to use what is learned to design non-biological systems 

that dissipate energy, replicate, and adapt [17]. There is 

also the inverse opportunity: Learning from biological 

complexity as a method of stimulating new chemistry. 

With this opportunity, there is a great reason for optimism. 

Biological systems display such a large number of 

remarkable capabilities (And capabilities that are so clearly 

complex). Artificial Neural Networks (ANNs) are one 

example of a successful transfer of information about a 

complex biological system on biological applications. 

ANNs were developed, in part, as a tool with which to 

model the brain. To what extent current ANNs do so is a 

continuing subject of discussion, but the effort to make the 

connection between ANNs and brains (and to learn from 

the brain) has unquestionably expanded the capabilities of 

computation [18]. 

In this same sense, biology (and perhaps also 

complex materials) offers examples of complex systems 

that show types of behaviour that are now uncommon in 

molecular chemistry. A self-organizing map (SOM) neural 

network is a kind of unsupervised learning neural network, 

which maps and classifies. The characteristics of a 

collection of objects to some classes. Most of the 

applications of this network are in signal processing or 

related topics. There are few works related to the 

application of SOM in the identification of a process state 

[19]. In this thesis, an algorithm is introduced to use SOM 

neural networks for computing and adapting the set of 

multiple models in SMM. It is applied to linear time-

varying systems, and some of its mathematical properties 

have been investigated. 

The multiple modelling by self-organizing map 

(MMSOM) neural network is utilized. Inputs to the SOM 

are the parameters of an instantaneous model computed 

adaptively at each instant. The set of the reference vectors 

(RV) of the nodes in SOM is the set of multiple models. 

This method is useful specifically when the parameters 

change within a convex space. After introducing the 

algorithm, some of its properties are explained by an 

illustrative example. 

SOM is a neural network, which maps the input 

data from the nm dimensional input space I to the M nodes 

output space O. O represents the quantization space of I, 

fig 2. Each of the nm input nodes Ii links to every of the M 

output nodes    with a weighted link   As shown in fig 2. 

In this study, the SOM neural network is utilized to 

produce the optimum set m of M linear models of the 

plant. The number of SOM inputs is equal to the number 

of estimation parameters. It has M output nodes, where M 

is the desired number of the local models. During this 

manuscript, the term node is used for the output node or 
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neuron. Otherwise, it is mentioned [20]. SOM learns its 

input and classifies them to some classes. At first, the 

Euclidean distance between the present input vector value 

and weights of the reference vectors of each output node is 

computed [21]. The network chooses the output node with 

the minimum distance as the winner node. The reference 

vectors of the neighbouring output nodes of the winner 

node are updated such that the new RV set of them is 

closer to the present input vector value. This training 

procedure is applied to all input vectors.

 

Fig. 2 SOM neural network illustration 

SOM produces the local models by which the 

plant is to be modelled. It constantly gathers and combines 

the information about the plant from the IM. IM is 

identified for every step. These different values for IM are 

categorized by the SOM into some classes. Each of the 

local models represents one of these classes. To put it 

another way, SOM quantizes the space of the plant models 

Dm into some quantization sets 

  

 {   } 
 

The IM parameters at the time t that is      , are 

the inputs to the SOM at that time. The number of the 

SOM input nodes should be nm, which is the same as the 

number of unknown parameters of the model. SOM 

compares these parameters with its reference vectors to 

find the winner node. The reference vectors of the 

neighbour nodes of the winner node learn the IM 

parameters change according to some learning rule. As a 

consequence, SOM classifies the produced values of the 

parameters of IM at different times into M classes. Each of 

the SOM nodes    with reference vector weights    
   represent one of the subsets   

  of the space 

   reference vector is the nearest one to the parameters set 

in   
  Definition of the borders  on {  

 }
   

 
 depends on the 

relative values of   As shown in Fig 2, this definition. If 

the whole square is    and each dot denotes a local 

model    , then the borders {  
 }

   

 
  areas are shown in 

fig3. 

                         
Fig. 3 Voronoi partition 

For every point in   
 ,   It is the nearest dot to it. 

This kind of partitioning is called Voronoi partitioning 20. 

More specifically, the training steps of the SOM are as 

follows: 

Assign an initial value to the weights     , Apply 

the input vector IM to the input nodes; Find the winner 

output node O* by the following criterion: 

   ‖        ‖                                                           

which describes the distance between the 

reference vector of the node j and the IM parameters       

where ||.|| denotes the Euclidean norm, 

   (         
) Is the reference vector connecting all 

input nodes to the output node j. Defining          

The winner neuron will be,    {  |     } Update the 

reference vectors by the learning rule: 

 

         

           [  
           ]                                

Where     is the ith component of the reference 

vector   ,      is the learning rate and              is the 

neighbourhood function for the winner node    in the 

output node     At time t. In the above procedure, the 

neighbourhood function and the learning rate should be 

defined according to the problem. The neighbourhood 

function               is a kind of radius window, which is 

centred on the winner node   , found in step 3, and is 

described in this study as: 
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Where m denotes the total number of the nodes. 

Dist (       ) is the distance between nodes Ok and    . 

The output nodes have net topology. Each node, based on 

the defined topology, is a one-step neighbour of some 

other nodes. The distance between the two output nodes is 

the minimum number of steps between them.  

III. RESULTS AND DISCUSSION 

As can be seen, the node     in fig 4 is a one-step 

neighbour of the nodes     and    . As a result,     is a 2 

steps neighbour of    . The distance between the nodes     

and     is one and between the nodes     and     Are two. 

The radius of the neighbourhood window decreases with 

time. The rate of change in the weights of the reference 

vector of a node The reference vectors are eventually 

distributed in a straight line between the two values    The 

distribution of the reference vector's weights is proved to 

be dependent on the distribution of    which itself depends 

on the distribution of    . SOM stores 16 models in its 

reference vectors. One of these models should be selected 

as the model of the plant. As explained in Section, the 

output error criterion compares the models and introduces 

the best one at each step. The input u to the plant is also 

given as the input to all of the 16 models in SOM. The 

outputs of the models are obtained, as is illustrated in 

figure 4. Then the performance measures are computed for 

these models. α Is  .95 in this example using the designed 

parameters  β γ  =  1   . 2 . This research is on developing 

a method to establish a set of multiple models for linear 

time-varying biological systems by using the self-

organizing map neural network [22]. Two versions of the 

method are introduced: MMSOM and MMISOM 

algorithms. Inputs to the neural network are parameters of 

the instantaneous model, evaluated adaptively in each 

instant of time. The neural network learns these models. 

So, the reference vectors of its output nodes are the 

estimation of the parameters of the multiple local models. 

At each time, it depends on the value of the neighbourhood 

function for that node. The magnitude change of the 

weights decreases as the distance of the node to the winner 

node increases. Fig 4 and 5. b is shown the clustering and 

predicting of the growing molecular networks [23]. The 

neighbourhood function for the SOM nodes is as described 

in the learning rate η= . 3, which is constant all through 

time. The obtained SOM after 2000 steps learning is 

shown in fig. 4 

 
 

Fig. 4 the obtained SOM after 2000 steps learning is shown 

A model with the closest output to the plant 

output is chosen as the model of the plant. MMSOM 

utilizes the rectangular SOM. It is suitable for the case that 

the space of its input is convex. On the other hand, The 

MMISOM utilizes an irregular self-organizing map 

(ISOM). The suitable number of models in MMISOM is 

not needed to be known at the beginning of the algorithm. 

It is variable, and the algorithm finds the number of 

suitable models for the plant. MMISOM has more 

flexibility than the MMSOM when the space of the linear 

model is not convex. Both methods are specifically 

suitable for plants with abruptly changed parameters. For 

instance, a robot arm should handle different loads one 

after another. 

MMSOM and MMISOM have improved on the 

identification of the time-varying plants compared to the 

identifications with just one adaptive model for biological 

systems. The major improvement is in the transient period 

where the single-model adaptive identifier adapts to the 

new situation of the biological system by some significant 

delay. Simulation results as shown in fig 5. b that the best 

model on MMSOM (and MMISOM) is introduced for the 

plant much faster than the adaptive neural network has 

been sufficiently trained. 

      A stochastic property of the local models is obtained. 

The parameters of the plant at each step are selected 

randomly with a specified distribution. Based on this 

distribution, the distribution of the parameters of the local 

models is derived for this plant and compared with the 

plant parameters distribution. Comparing these PDF's 

shows that the distribution of the local models approaches 

to some function of the plant parameters distribution, and 

not exactly to them. Three factors affect this function and 

help the distribution to approach the plant one. The first 

factor is the quality of the IM identification, which affects 

the relationship between the plant parameters and the 

training inputs to SOM. 

  

                       Fig.5  (TOP) Molecular Clustering by using SOM 

Algorithms predict the trend of features Fig.5.b (DOWN) SOM can 

be Predicting the trend of growing molecular networks 
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Inputs to the neural network are parameters of the 

instantaneous model, evaluated adaptively in each instant 

of time. The neural network learns these models. So, the 

reference vectors of its output nodes are the estimation of 

the parameters of the multiple local models. MMSOM 

utilizes the rectangular SOM. It is suitable for the case that 

the space of its input is convex. On the other hand, The 

MMISOM utilizes an irregular self-organizing map 

(ISOM). The suitable number of models in MMISOM is 

not needed to be known at the beginning of the algorithm. 

It is variable, and the algorithm finds the number of 

suitable models for the Biological systems. MMISOM has 

more flexibility than the MMSOM when the space of the 

Biological systems linear model is not convex. Both 

methods are specifically suitable for plants with abruptly 

changed parameters. 

      MMSOM and MMISOM have an improvement in the 

identification of the time-varying systems compared to the 

identifications with just one adaptive mode. The major 

improvement is in the transient period where the single-

model adaptive identifier adapts to the new situation of the 

Biological systems by some significant delay. Simulation 

results show that the best model on MMSOM (and 

MMISOM) is introduced for the plant much faster than the 

adaptive IM after the neural network has been sufficiently 

trained. 

      Training of the neural network can be online or offline. 

The algorithms can introduce the model of the plant in 

situations that they have been experienced a few times. 

Therefore, none of the models is suitable at the early steps 

before sufficient training. Fortunately, the algorithm can 

take advantage of the adaptive IM identifier as the best 

model during that learning period. Hence, the quality of 

identification is at least the single adaptive IM one. 

Although these algorithms introduce the model of the plant 

faster than the IM identifier, the quality of the local models 

is directly related to the introduced IM to the SOM. 

IV. CONCLUSION 

In this paper, the goal is on developing a method 

to establish a set of multiple models for linear time-varying 

Biological systems by using the self-organizing map neural 

network. Two versions of the method are introduced: 

MMSOM and MMISOM algorithms. A stochastic property 

of the local models is obtained in the paper. The 

parameters of the Biological systems at each step are 

selected randomly with a specified distribution. Based on 

this distribution, the distribution of the parameters of the 

local models is derived for this system and compared with 

the Biological systems parameters distribution. At each 

time, the model with the closest output to the plant output 

is chosen as the model of the plant. 
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